Robot Calibration: Modeling Measurement and Applications

نویسنده

  • José Maurício S. T. Motta
چکیده

Most currently used industrial robots are still programmed by a teach pendant, especially in the automotive industry. However the importance of off-line programming in industry as an alternative to teach-in programming is steadily increasing. The main reason for this trend is the need to minimize machine downtime and thus to improve the rate of robot utilization. Nonetheless, for a successful accomplishment of off-line programming the robots need to be not only repeatable but also accurate. In addition to improving robot accuracy through software (rather than by changing the mechanical structure or design of the robot), calibration techniques can also minimize the risk of having to change application programs due to slight changes or drifts (wearing of parts, dimension drifts or tolerances, and component replacement effects) in the robot system. This is mostly important in applications that may involve a large number of task points. Theoretically, with the availability of robot calibration systems integrated with off-line programming systems, it would be possible to implement off-line programming in industry (currently they are not ready to be used in large scale), where multiple robots are used, by programming only one robot and copying the programs from one robot to the others. One of the most evident advantages of this type of programming is the reduction in maintenance expenditure, since the robot can return faster to service and easy reprogramming means the software becomes operational with little effort. Robot calibration is an integrated process of modeling, measurement, numeric identification of actual physical characteristics of a robot, and implementation of a new model. The calibration procedure first involves the development of a kinematic model whose parameters represent accurately the actual robot. Next, specifically selected robot characteristics are measured using measurement instruments with known accuracy. Then a parameter identification procedure is used to compute the set of parameter values which, when introduced in the robot nominal model, accurately represents the measured robot behavior. Finally, the model in the position control software is corrected. Many factors such as numerical problems, measurement system deficiencies, cumbersome setups and commercial interests have defied the confidence of the industry in such systems, especially if one realizes that a robot will not normally need full calibration more than once or twice a year.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation and Calibration of Robot Link Parameters with Intelligent Techniques

Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy ...

متن کامل

Dual Space Control of a Deployable Cable Driven Robot: Wave Based Approach

Known for their lower costs and numerous applications, cable robots are an attractive research field in robotic community. However, considering the fact that they require an accurate installation procedure and calibration routine, they have not yet found their true place in real-world applications. This paper aims to propose a new controller strategy that requires no meticulous calibration and ...

متن کامل

Kinematic calibration of a parallel robot using coordinate measuring machine

In the applications of parallel robots, kinematic calibration is required to eliminate the errors resulting from the manufacturing and assembly. In this paper, a new method for calibrating a parallel robot is proposed. An error model for kinematic calibration is constructed using differential geometry method. All leg length information and pose error are obtained based on measurement results co...

متن کامل

Magnetic Calibration of Three-Axis Strapdown Magnetometers for Applications in Mems Attitude-Heading Reference Systems

In a strapdown magnetic compass, heading angle is estimated using the Earth's magnetic field measured by Three-Axis Magnetometers (TAM). However, due to several inevitable errors in the magnetic system, such as sensitivity errors, non-orthogonal and misalignment errors, hard iron and soft iron errors, measurement noises and local magnetic fields, there are large error between the magnetometers'...

متن کامل

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012